SUMMARY OF ORGANIC REACTIONS

SECTION 1 - ALIPHATIC

Aldehydes and ketones

Type of reaction	Mechanism
 1. oxidation (aldehydes only): aldehyde → carboxylic acid reagents: potassium dichromate (K₂Cr₂O₇) in sulphuric acid (H₂SO₄) conditions: warm under reflux equation: R-CHO + [O] → R-COOH observation: orange to green to distinguish between aldehydes and ketones: either: add Fehling's solution and heat observation: blue solution to brick red precipitate equation: R-CHO + 4OH⁻ + 2Cu²⁺ → R-COOH + Cu₂O + 2H₂O or: add Tollen's reagent and heat observation: colourless solution to silver mirror equation: R-CHO + 2[Ag(NH₃)₂]⁺ + H₂O → RCOOH + 2Ag + 4NH₃ + 2H⁺ 	n/a
2. reduction : carbonyl \rightarrow alcohol reagents: NaBH ₄ (aq) conditions: room temperature equation: R ₁ -CO-R ₂ + 2[H] \rightarrow R ₁ -CH(OH)-R ₂	Nucleophilic addition (required)
3. addition of HCN: carbonyl → hydroxynitrile reagents: NaCN and HCl(aq) conditions: room temperature equation: R ₁ -CO-R ₂ + HCN → R ₁ -C(CN)(OH)-R ₂	Nucleophilic addition (required)

Carboxylic acids and their salts

Type of reaction	Mechanism
1. acid-base	n/a
a) carboxylic acids with sodium hydroxide reagent: NaOH	
conditions: room temperature equation: R-COOH(aq) + NaOH(aq) \rightarrow R-COO ⁻ Na ⁺ (aq) + H ₂ O(l)	
b) carboxylic acids with sodium carbonate reagent: Na ₂ CO ₃	
conditions: room temperature equation: $2R$ -COOH(aq) + Na ₂ CO ₃ (aq) \rightarrow $2R$ -COO ⁻ Na ⁺ (aq) + CO ₂ (g) + H ₂ O(l)	
observations: colourless gas evolved which turns limewater milky	
reagent: HCl(aq)	
conditions: room temperature equation: R -COO ⁻ (aq) + H ⁺ (aq) \rightarrow R-COOH(aq)	
2. esterification	Nucleophilic addition/
reagents: any alcohol, concentrated sulphuric acid catalyst	Elimination
equation: R_1 -COOH + R_2 OH == R_1 -COOR ₂ + H_2 O	(not required)

Esters

Type of reaction	Mechanism
hydrolysis	n/a
a) acid hydrolysis reagent: concentrated H_2SO_4 conditions: heat under reflux equation: R_1 -COOR ₂ + H_2O == R_1 -COOH + R_2OH	
b) alkaline hydrolysis (saponification) reagent: NaOH(aq) conditions: heat under reflux equation: R_1 -COOR ₂ + NaOH == R_1 -COO ⁻ Na ⁺ + R_2 OH	

Acyl chlorides and acid anhydrides

Type of reaction	Mechanism
 1. acylation using acyl chlorides a) with water (to make carboxylic acids) conditions: room temperature. 	Nucleophilic addition- elimination (required)
equation: R -COCl + $H_2O \rightarrow R$ -COOH + HCl observation: white misty fumes	(114-110)
b) with ammonia (to make amides) conditions: room temperature equation: R -COCl + NH ₃ \rightarrow R-CONH ₂ + HCl observation: white misty fumes	
c) with alcohols (to make esters) conditions: room temperature equation: R_1 -COCl + R_2 -OH $\rightarrow R_1$ -COOR ₂ + HCl observation: white misty fumes	
d) with primary amines (to make N-substituted amides) conditions: room temperature equation: R_1 -COCl + R_2 -NH ₂ \rightarrow R_1 -CONHR ₂ + HCl observation: white misty fumes	
 2. acylation using acid anhydrides a) with water (to make carboxylic acids) conditions: room temperature equation: R₁-COOCO-R₂ + H₂O → R₁-COOH + R₂-COOH 	Nucleophilic addition- elimination (not required)
b) with ammonia (to make amides) conditions: room temperature equation: R_1 -COOCO- R_2 + NH ₃ \rightarrow R_1 -CONH ₂ + R_2 -COOH	
 c) with alcohols (to make esters) conditions: room temperature equation: R₁-COOCO-R₂ + R₃-OH → R₁-COO-R₃ + R₂-COOH d) with primary amines (to make N-substituted amides) conditions: room temperature equation: R₁-COOCO-R₂ + R₃-NH₂ → R₁-CONH-R₃ + R₂-COOH 	

Amines

Type of reaction	Mechanism
1. haloalkane → primary amine	Nucleophilic
reagents: haloalkane and excess ammonia conditions: heat equation: $R-X + 2NH_3 \rightarrow R-NH_2 + NH_4X$ or	substitution (required)
reagent: haloalkane and ammonia (1:1 ratio) conditions: heat equation: $R-X + NH_3 \rightarrow R-NH_2 + HX$	
2. haloalkane → secondary amine	
reagents: haloalkane and ammonia (2:1 ratio) conditions: heat equation: $2R-X + NH_3 \rightarrow R-NH-R + HX$ or	
reagents: haloalkane and primary amine conditions: heat equation: R_1 -X + R_2 -NH ₂ \rightarrow R_1 -NH- R_2 + HX	
3. haloalkane → tertiary amine	
reagents: haloalkane and ammonia (3:1 ratio) conditions: heat equation: $3R-X + NH_3 \rightarrow R_3N + HX$	
reagents: haloalkane and secondary amine conditions: heat equation: R_1 -X + R_2 -NH- $R_3 \rightarrow R_1R_2R_3N$ + HX	
4. haloalkane → quartenary ammonium salt	
reagents: haloalkane and ammonia (4:1 ratio) conditions: heat equation:	
$4R-X + NH_3 \rightarrow [R_4N]^*X^*$ or	
reagents: haloalkane and secondary amine conditions: heat	
equation: $R_1 - X + R_2 R_3 R_4 N \rightarrow [R_1 R_2 R_3 R_4 N]^+ X^-$	
2. reduction : nitrile \rightarrow primary amine	n/a
reagents: LiAlH ₄ in dry ether conditions: room temperature equation: $R-CN + 4[H] \rightarrow R-CH_2NH_2$	
3. acid-base:	n/a
a) amines with acids equations: R_1 - NH_2 + HCl \rightarrow R_1 - NH_3 Cl R_1R_2 - NH + HCl \rightarrow R_1R_2 - NH_2 Cl $R_1R_2R_3$ - N + HCl \rightarrow $R_1R_2R_3$ - N HCl	
b) alkyl ammonium salts with alkalis equations: R_1 -NH ₃ Cl + NaOH \rightarrow R_1 -NH ₂ + NaCl + H ₂ O R_1R_2 -NH ₂ Cl + NaOH \rightarrow R_1R_2 -NH + NaCl + H ₂ O $R_1R_2R_3$ -NHCl + NaOH \rightarrow $R_1R_2R_3$ -N + NaCl + H ₂ O	

Amino Acids

Type of reaction	Mechanism
1. acid-base reactions of amino acids	
a) with acids reagents: HCl conditions: room temperature equation: R-CH(NH ₂)-COOH + HCl \rightarrow R-CH(NH ₃ ⁺ Cl ⁻)-COOH	
b) with alkalis reagents: NaOH conditions: room temperature equation: R-CH(NH ₂)-COOH + NaOH \rightarrow R-CH(NH ₂)-COONa ⁺ + H ₂ O	
2. condensation reactions of amino acids	
conditions: DNA equation: n R-CH(NH ₂)-COOH \rightarrow H-(NHCRHCO) _n -OH + (n-1) H ₂ O	Nucleophilic addition- elimination
3. hydrolysis of proteins	(not required)
reagents: 6 moldm ⁻³ HCl conditions: heat, reflux equation: H-(NHCRHCO) _n -OH + (n-1) H ₂ O + n HCl \rightarrow n R- CH(NH ₃ ⁺ Cl ⁻)-COOH	

Polymers

Type of reaction	Mechanism
1. nitration (benzene → nitrobenzene)	Electrophilic
Reagent: conc HNO ₂ in conc H ₂ SO ₄	substitution (required)
Conditions: 50-55°C under reflux	(required)
Equation: $C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$	
2. alkylation (benzene → alkylbenzene)	Electrophilic
	substitution
Conditions: 50°C under reflux	(required)
Equation: $C_6H_6 + R-Cl \rightarrow C_6H_5-R + HCl$	
OR	
Reagent: alkene with anhydrous AlCl ₃ and HCl	
Equation: $C_6H_6 + R_1R_2C = CR_1R_2 \rightarrow C_6H_5CR_1R_2CR_3R_4$	
3. acylation (benzene \rightarrow phenylketone)	Electrophilic
Reagent: R-COCl with anydrous AlCl ₃	(required)
Conditions: 50°C under reflux	
Equation: $C_{c}H_{c} + R_{c}COCl \rightarrow C_{c}H_{c}COR + HCl$	
4. reduction (nitrobenzene \rightarrow phenylamine)	n/a
Reagents: Sn in conc HCl	
Conditions: neat under reflux	
Equation: $C_6H_5NO_2 + 6[H] \rightarrow C_6H_5NH_2 + 2H_2O$	

SECTION 2 – AROMATIC