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SECTION A (Module 1)

Answer BOTH questions.
1. (2 E&nd-f%}if
(i) xX¥*+y"—2x+2y—-14=0 [3 marks]
(i) y=eor [3 marks]
(iii)  y = cos® 6x + sin? 8x. [3 marks]

(b) Lﬁy=xﬁn%3x¢0

Show that
. dy 1
= =y — k
(1) X a0 Y cos(x) [3 marks]
d*y
) x* oz Tr= 0. [3 marks]
©) A curve is given by the parametric equations x =V 7, y—t= ——l\/: .
t
(i)  Find the gradient of the tangent to the curve at the point where ¢ = 4.
[7 marks]
(ii))  Find the equation of the tangent to the curve at the point where 7 = 4.
[3 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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2. (a LetF(x)=—1'—I retdt
n nl J,
(1) Find F (x) and F (0), given that 0! = 1. [3 marks])
(i) ShowthatF (x)=F  (x)— % X e, [7 marks]

(iii)  Hence, show that if M is an integer greater than 1, then

- XX xM
e"FM(x)——(x+—2—!+§+...+M)+(e"——1). [4 marks]
(b) (i)  Express ézxz—;%z in partial fractions. [S marks]
(i) Hence, ﬁnd.[ (?ZT-FI:;Z dx. [6 marks]
Total 25 marks
GO ON TO THE NEXT PAGE
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3. (a) The sequence of positive terms, {x }, is defined by x

—

@)

(i1)
(b) (1)

(i)

(iii)

(iv)
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SECTION B (Module 2)

Answer BOTH questions.

1 1
=x2n+7,x1<7,n21.

+1

Show, by mathematical induction, that x < % for all positive integers 7.

[5 marks]
By considering x - x ,show thatx <x . [3 marks]
Find the constants 4 and B such that
2-3x A B
= + . 3 k
A-0(-20 T-x 1-2 [3 marks]

Obtain the first FOUR non-zero terms of the expansion of each of (1 —x)' and
(1 —2x)" as power series of x in ascending order. [4 marks]

Find

a) the range of values of x for which the series expansion of

2—3x
(1-x(-2x)
is valid [2 marks]
b) the coefficient of x” in (iii) a) above. [2 marks]

The sum, S , of the first # terms of a series is given by
S =n(3n-4).

Show that the series is an Arithmetic Progression (A.P.) with common
difference 6. [6 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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4. (@) A Geometric Progression (G.P.) with first term a and common ratio », 0 < r < 1, is such

26

3 and their product is 8.

that the sum of the first three terms is

(i) Showthatr+1+ —’17 = 13—3 . [4 marks]

(i1))  Hence, find

a)  the value of r |4 marks]
b) the value of ¢ [1 mark ]
c) the sum to infinity of the G.P. [2 marks]
(b) Expand
2
s xI<1
in ascending powers of x as far as the term in x*. [5 marks]

© Letfir) = r(r17+1)’r € N.

(i)  Express Ar) —f(r+ 1) in terms of r. [3 marks]

(ii)  Hence, or otherwise, find

s =2 4. [4 marks]
o=l p(r+1)(r+2)

(iii))  Deduce the sum to infinity of the series in (c) (ii) above. [2 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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SECTION C (Module 3)

Answer BOTH questions.

5. (a) [ 7 J is defined as the number of ways of selecting » distinct objects from a given set of
r

n distinct objects. From the definition, show that

(1) n} = [ " ] [2 marks]
Lr n—vr

[ +1 n n
(i1) nr j = [},J + [r—l} [4 marks]

(iii)  Hence, prove that

HEHIRIHEH

is a perfect square. [3 marks]
(b) (i)  Find the number of 5-digit numbers greater than 30 000 which can be formed with
the digits, 1, 3, 5, 6 and 8, if no digit is repeated. [3 marks]

(1)  What is the probability of one of the numbers chosen in (b) (i) being even?
[5 marks]
(©) (i) a) Show that (1 — ) is one of the square roots of —2i. [2 marks]
b)  Find the other square root. [1 mark ]

(ii)  Hence, find the roots of the quadratic equation

Z—(B+5)z+(8i-4)=0. [S marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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(@) 1 1 1
The matrix A = | 2 -3 2
-1 3 =2

(i)  Show that| A |=5. [3 marks]

(i)  Matrix A is changed to form new matrices B, C and D. Write down the determinant
of EACH of the new matrices, giving a reason for your answer in EACH case.

a)  Matrix B is formed by interchanging row 1 and row 2 of matrix A and then
interchanging column 1 and column 2 of the resulting matrix. [2 marks]

b) Row 1 of matrix C is formed by adding row 2 to row 1 of matrix A. The
other rows remain unchanged. {2 marks]

c)  Matrix D is formed by multiplying each element of matrix A by 5.

[2 marks]
(b) 12 -1 5
Giventhe matrixM =| 2 -1 0 |,
-9 2 -5
Find
i) AM [3 marks]
(i)  theinverse, A, of A. [2 marks]
(©) (i)  Write the system of equations
x +y +z =5
2x — 3y + 2z=-10
—-x — 3y — 2z= -11
in the form Ax = b. [1 mark ]
(ii)  Show thatx=A"'b. [2 marks]
(iii)  Hence, solve the system of eqﬁations. [2 marks]

(iv) a)  Showthat(x,y,z)=(1, 1, 1)is asolution of the following system of equations:

x +y +z =3
2x+ 2y + 2z = 6
3x+ 3y + 32 =9 [1 mark ]
b)  Hence, find the general solution of the system. [5 marks]
Total 25 marks
END OF TEST
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