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SECTION A (Module 1)

Answer this question.

1. (a) A target is moving along a curve whose parametric equations are
x=4-3cost, y=5+2sint,
where 7 is the time. The distances are measured in metres.
Let 0 be the angle which the tangent to the curve makes with the positive x-axis.

(i)  Find the rate at which 8 is increasing or decreasing when ¢ = % seconds.

[7 marksj
(i)  What are the units of the rate of increase? [1 mark |
(iii)  Find the Cartesian equation of the curve. [2 marks]
(b) Find the general solution of the differential equation

&y 3 b 4 g
2 e 4y = 8x°, [10 marks]
Total 20 marks

SECTION B (Module 2)
Answer this question.
2. (a) (i)  Show that the equation x? + 8x — 8 = 0 has a root, a, in the interval [0, 1].

(3 marks]

(i) By taking x, = 0 as the first approximation for a and using the formula

8—x? . o
X1 T g “— three times, find a better approximation for a. [3 marksj

n+l

(b) (1)  Write down the first FOUR non-zero terms of the expansions of In (1 —x) and ¢~
in ascending powers of x, stating for EACH expansion the range of values of x for
which it is valid. [3 marks]

2 3
(G3) If-l1<x<landy==x+ % + % + ..., prove that

x=1-¢e7. {2 marks]
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(© In a model for the growth of a population, p, is the number of individuals in the population
at the end of » years. Initially, the population consists of 1000 individuals. In EACH
calendar year (January to December), the population increases by 20% and on 31 December,
100 individuals leave the population.

()  Calculate the values of p, and p,. |2 marks]
(ii)  Obtain an equation connecting p . and p . [1 mark |
(iti)  Show that p = 500(1.2)" + 500. [6 marks]

Total 20 marks

SECTION C (Module 3)

Answer this question.

(a) 5 -6 -6
LetA=| -1 4 2
3 -6 -4

(i)  Show that A2—3A +2I=0. [6 marks]

(i)  Deduce that A = ;— (BI-A). [4 marks]

(iii)  Hence, find the solution of the system of equations

5x —6y—6z=10
—x+4y+2z=-4

3x—6y—4z=8. [3 marks]
2+i . . 1
(b) Ifz= =7 find the real and imaginary parts of z + " [4 marks]
(©) Ifz+ —;— is written in the form r (cos 0 + i sin 8) where r is the real and positive, find »
and tan 0. (3 marks]

Total 20 marks
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