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SECTION A (MODULE 1)

Answer this question.

1. (a) z = 8 + (8√3)i.

(i) Find the modulus and argument of z. [3 marks]

(ii) Using de Moivre’s theorem show that z3 is real, stating the value of z3.

[2 marks]

(b) A complex number is represented by the point P in the Argand diagram.

(i) Given that | − 6| = | | show that the locus of P is x = 3. [2 marks]

(ii) Find the complex numbers z which satisfy both| − 6| = | | and | − 3 − 4i| =5. [5 marks]
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Total 20 marks
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SECTION B (MODULE 2)

Answer this question

2. (a) (i) Show that (r + 1)3  (r  1)3 = 6r2 + 2. [2 marks]

(ii) Hence show that 
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[5 marks]
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where a and b are constants to be

found.
[4 marks]

(b) The displacement x metres of a particle at time t seconds is given by the
differential equation dd + + cos = 0.
When t = 0, x = 0 and

dd = 0.5.

Find a Taylor series solution for x in ascending powers of t, up to and
including the term in t3.

[5 marks]

(c) Given that is the only real root of the equation− − 6 = 0,
(i) Show that 2.2 < < 2.3. [2 marks]

(ii) Use linear interpolation once on the interval [2.2, 2.3] to find another
approximation to , giving your answer to 3 decimal places.

[2 marks]

Total 20 marks



4

GO ON TO NEXT PAGE
02134032/CAPE/SPEC

SECTION C (MODULE 3)

Answer this question

3. (a)      Three identical cans of cola, two identical cans of green tea and two identical
cans of orange juice are arranged in a row.

Calculate the number of arrangements if the first and last cans in the row are of
the same type of drink.

[3 marks]

(b) Kris takes her dog for a walk every dy. The probability that they go to the park
on any day is 0.6. If they go to the park there is a probability of 0.35 that the
dog will bark. If they do not go to the park there is  probability of 0.75 that the
dog will bark.

Find the probability that the dog barks on any particular day. [2 marks]

(c) A committee of six people, which must consist of at least 4 men and at least
one woman, is to be chosen from 10 men and 9 women.

Find the number of possible committees that include either Albert or Tracey
but not both.

[3 marks]

(d) A =
1 −1 32 1 40 1 1 B =

−3 4 −7−2 1 22 −1 3
(i) Find AB. [2 marks]

(ii) Deduce . [2 marks]

(iii) Given that =
1 −1 32 1 40 1 1 , prove that ( ) = .

[2 marks]

(e) Find the general solution of the differential equationdd + cot = sin .
[6 marks]

Total 20 marks

END OF TEST
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