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SECTION A (Module 1)

Answer BOTH questions.

1. (a) The temperature of water, x° C, in an insulated tank at time, ¢ hours, may be modelled by
the equation x = 65 + 8¢™°%'. Determine the

(i) initial temperature of the water in the tank [2 marks]

(i)  temperature at which the water in the tank will eventually stabilize

[2 marks]
(iii)  time when the temperature of the water in the tank is 70° C. [4 marks]
) (i)  Given that y = ™ '@, where — -% n <tan™ (2x) < —;— n, show that
(1 + 4x2) % =2y. [4 marks]
2.
(i)  Hence, show that (1 + 4x2)? % =4y (1 - 4x). [4 marks]
. 4
Det J'
() etermine pea
(i) by using the substitution u = e* [6 marks]
(ii) by first multiplying both the numerator and denominator of the integrand 1 7
by e~*before integrating. [3 marks]

Total 25 marks
2. (a) (i) Given that n is a positive integer, find % [x (In x)"]. [4 marks]

(ii)  Hence, or otherwise, derive the reduction formula I =x (Inx)”—nl _,, where

I = j (In x)" dx. [4 marks]

(iii)  Use the reduction formula in (a) (ii) above to determine I(ln x)*dx. [6 marks]

GO ON TO THE NEXT PAGE
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(b) The amount of salt, y kg, that dissolves in a tank of water at time ¢ minutes satisfies the

. . . dy 2y _
differential equatlon?+ 7T 10 3.

(i)  Using a suitable integrating factor, show that the general solution of this differential

equationisy=¢+ 10 + where c is an arbitrary constant.  [7 marks]

_c
¢+ 107"

(i)  Given that the tank initially contains 5 kg of salt in the liquid, calculate the amount

of salt that dissolves in the tank of water at t = 15. [4 marks]
Total 25 marks
SECTION B (Module 2)
Answer BOTH questions.
3. (a) The first four terms of a sequence are

2x3, 5x5, 8x7, 11x09.
(i)  Express, in terms of r, the r th term of the sequence. [2 marks]

(i) IfS, denotes the series formed by summing the first n terms of the sequence, find
S in terms of n. [S marks]

(b) The 9* term of an A.P. is three times the 3™ term and the sum of the first 10 terms is 110.

Find the first term a and the common difference d. [6 marks]
(©) ()  Use the binominal theorem to expand (1 + 2x)* as far as the term in x*, stating the
values of x for which the expansion is valid. [5 marks]
.. 1
(i)  Prove that X = —(1+x-V1+2x) forx>0. [4 marks]
1+x+V1+2x %

(iif)  Hence, or otherwise, show that, if x is small so that the term in x* and higher powers
of x can be neglected, the expansion in (c) (ii) above is approximately equal to

;—x (1 -x). [3 marks]

Total 25 marks
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By expressing "C_and "C, | in terms of factorials, prove that"C_+"C _ ="*IC.

[6 marks]
a)  Given that 7 is a positive integer and f{r) = %, show that
O -Ar+ )= (r-:l)! [3 marks]
b)  Hence, or otherwise, find the sum
S -El Nk [5 marks]
¢)  Deduce the sum to infinity of S in (ii) b) above. [2 marks]

Show that the function f{x) = x* — 6x + 4 has a root x in the closed interval [0, 1].
RTI [5 marks]

By taking 0.6 as a first approximation of x, in the interval [0, 1], use the Newton-
Raphson method to obtain a second approximation x, in the interval [0, 1].
[4 marks]

Total 25 marks
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SECTION C (Module 3)

Answer BOTH questions.

s. (a) Calculate

)

(i)

the number of different permutatlons of the 8 letters of the word SYLLABUS
[3 marks]

the number of different selections of 5 letters which can be made from the letters
of the word SYLLABUS. [S marks]

(b) The events A and B are such that P(A) 0. 4 P(B) O 45 and P(4 v B)=0.68.

®
(i)

(©) ®

(i)
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Find PU N B). ’ [3 marks]

Stating a reason in each case, determine whether or not the events 4 and B are

a)  mutually exclusive [3 marks]
b) independent. [3 marks]
Express the complex number (2 + 3i) +d T in the form a + ib, where a and b are
both real numbers. [4 marks]
Given that 1 — i is the root of the equation z* + z2 — 4z + 6 = 0, find the remaining
roots. [4 marks]
Total 25 marks
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(a) A system of equations is given by
x+y+z=0
xt+ty—-z=-1
x+2y+4z=k

where k is a real number.

(i)  Write the augmented matrix of the system. [2 marks]

(i) Reduce the augmented matrix to echelon form. [3 marks]
(iii)  Deduce the value of & for which the system is consistent. [2 marks]

(iv)  Find ALL solutions corresponding to the value of & obtained in (iii) above.

[4 marks]
®) 0 -1 1-
GivenA= |~1 0 1
1 1 1
(i) Find

a) A2 [4 marks]
b) B=3I+A4-4° [4 marks]
(i) Calculate AB. [4 marks]
(iii)  Deduce the inverse, 47!, of the matrix 4. [2 marks]
Total 25 marks
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