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SECTION A (Module 1)

Answer BOTH questions.

Differentiate with respect to x

(i) e*cosmx [4 marks]
. 241
Gi) In I, » [4 marks]
N X
- Given y = 37, show, by using logarithms, that
, oy |
4 = 3 I3 | (5 marlfs]

(1)  Express in partial fractions
22 -3x+4

G-DEr])’ [7 marks]
(if) Hence, find ,
2x2—-3x+4 [5 marks]

-1 GE*+1)
Total 25 marks

Solve the differential equation
L oy y = e, [5 marks]

dx

The gradient at the point (x, y) on a curve is given by

-d_y = o
i .
Given that the curve passes through the point (0, 1), find its equation. [5 marks]
Evaluate I x? In x dx, writing your answer in terms of e. [7 marks]
1
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(@) (i) Use the substitution v =1 — u to find
du '
o —_— {3 marks]
I
(ii)  Hence, or otherwise, use the substitution # = sin x to evaluate
rf2 .
J.o Vi+sinx dx [5 marks]

Total 25 marks

SECTION B (Module 2)
Answer BOTH questions.
3. (@ A sequence {u } is defined by the recurrence relation
un+l=un+n,ul=3, n € N.
(1)  State the first FOUR terms of the sequence. ' [3 marks]

(ii)  Prove by mathematical induction, or otherwise, that

n”-n+6

= — 8 mark
u, > { rks}
(b) A GP with first term a and common ratio 7 has sum to infinity 81 and the sum of the first
four terms is 65. Find the values of a and r. [6 marks]
(c) (i) Write down the first FIVE terms in the power series expansion of In (1 + x),
stating the range of values of x for which the series is valid. [3 marks]

(i) a)  Using the result from (c) (i) above, obtain a similar expansion for In (1 —x).
[2 marks]
b)  Hence, prove that

T+x ) 1 1
ln[l_xJ——Z(x+—3—x3+—5—x + ). [3 marks]

Total 25 marks
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4. (a) ‘(i) Show that the function f{x) =x*—3x + 1 has a root « in the closed interval [1, 2].
[3 marks]

(i)  Use the Newton-Raphson method to show that if x, is a first approximation to a
in the interval [1, 2], then a second approximation to « in the interval [1, 2] is

given by

2x’- 1

x, = . [S marks]
2

3x - 3
(b) (i)  Use the binomial theorem or Maclaurin’s theorem to expand (1 +x)™" in ascending
powers of x as far as the term in x°, stating the values of x for which the expansion
is valid. [4 marks]
(i)  Obtain a similar expansion for (1 — x)*. [4 marks]

(iii)  Prove that if x is so small that x* and higher powers of x can be neglected, then

1-x 1
~ 1 —x + 2 x2
] 1 x 2x.

[5 marks]

(iv)  Hence, by taking x = 117 , show, without using calculators or tables, that V2 is

approximately equal to i?gé [4 marks]
. Total 25 marks
SECTION C (Module 3)
. Answer BOTH questions.
5. (a) A cricket selection committee of 4 members is to be chosen from 5 former batsmen and

3 former bowlers.

In how many ways can this committee be selected so that the committee includes AT

- LEAST
(i) ONE former batsman? [8 marks]
(ii) ONE batsman and ONE bowler? [3 marks]
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(b) Given the matrices

310 1 -1 1 T 1 0 1
A= 1 01|, B= 0 0-1 |and M = 0 0-3 |,
0-1 0 -1 3 -1 -1 3 -1

(i) determine EACH of the following matrices:

a) A-B i2 marks]'

b) AM [3 marks]
-(ii) deduce from (i) b) above the inverse A of the matrix A [3 marks]
(iii)  find the inatrix X such that AX + B =A. {6 marks] |

Total 25 marks

(a) (i) Express the complex number
2——3.1' in the form A (1 - i). [4 marks]
—i
(i1)  State the value of A. [1 mark ]
2-3i | '
(ii1)  Verfy that[ 5'_ il ] is a real number and state its value. [5 marks]

(b)  The complex number z is represented by the point 7T in an Argand diagram.

Given that z = 3 41_ 7 where ¢ is a variable and Z denotes the complex conjugate of z,
show that
) z+z=62 _ ‘ [7 marks]

(i1)  as ¢ varies, T lies on a circle, and state the coordinates of the centre of this circle.
' [8 marks]

Total 25 marks
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