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SECTION A (MODULE 1)

Answer BOTH questions.

1. (a) Let p and q be given propositions.

(i) Copy and complete the table below to show the truth tables of p → q
and ~ p ∨ q.

[3 marks]

(ii) Hence, state whether the compound propositions p → q and ~p ∨ q are
logically equivalent, stating reasons for your answer.

[2 marks]

(iii) Use the algebra of propositions to show that p ∧ (p → q) = p ∧ q.
[3 marks]

(b) The binary operation * is defined on the set of real numbers, , as follows:∗ = + − 1
For all x, y in

Prove that

(i) * is closed in , [3 marks]

(ii) * is commutative in , [2 marks]

(iii) *is associative in . [4 marks]

(c) Let y = .

(i) Show that for all real values of x, − ≤ ≤ [5 marks]

(ii) Hence, sketch the graph of y for all x such that 2 ≤ ≤ 2
[3 marks]

Total 25 marks

p q ~p p → q ~p ∨ q
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2.    (a)      Two of the roots of the cubic equation 22 23  qxpxx = 0 are 1 and
2
1 .

Find

(i)  the values of the constants p and q [4 marks]

(ii) the third root of the equation. [3 marks]

(b) Prove by Mathematical Induction that 



n

r
r

1

)56( = ).83( nn [10 marks]

(c) Solve for x the following equation e + 2e = 3.
[8 marks]

Total 25 marks
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SECTION B (MODULE 2)

Answer BOTH questions.

3. (a) (i) Prove the identity 

 2tan

cos3cos
sin3sin



 . [4 marks]

(ii) Solve the equation sin + sin 2 + sin 3 = 0, 0 ≤  ≤ 2π.
[7 marks]

(b) (i) Express  sin6cos8)(f  in the form r cos )(  
where    r  >  0,  00 < .900 [3 marks]

(ii) Determine the minimum value of

)(g  =
 sin6cos810

10


and

state the value of  for which g ( ) is a minimum. [4 marks]

(c) Let A = (2, 0, 0), B = (0, 0, 2), C = (0, 2, 0).

(i) Express the vectors BC and BA in the form xi + yj + zk [2marks]

(ii) Show that the vector r = i + j + k is perpendicular to the plane through
A, B, and C.

[2 marks]
(iii) Hence, find the Cartesian equation of the plane through A, B and C.

[3 marks]

Total 25 marks
4. The equation of the line L is + 2 = 7 and the equation of the circle C is

.01422  xyx

(a) Show that the line L is a tangent to the circle C. [9 marks]

(b) Find,

(i) the equation of the tangent M diametrically opposite to the
tangent L of circle C.

[5 marks]
(ii) the equation of the diameter of C parallel to L and the

coordinates of its points of intersection with C. [6 marks]

(c) The parametric equations of a curve, C, are given by

t
tx



1

and
t
ty



1

2

.

Determine the Cartesian equation of C. [5 marks]

Total 25 marks
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SECTION C (MODULE 3)

Answer BOTH questions.

5. (a) Show that
0

lim
h

x
xhx

h 2


. [6 marks]

(b) The function f (x) is such that f ( ) = 18 + 4. Given that f (2) = 14
and f (3) = 74, find the value of f (4).

[8 marks]

(c)        If 21 x
xy


 , show that

(i) 2
22 )1(

1
d
d y

xx
y




 [5 marks]

(ii)  
 22

2

2

2

1
32

d
d

x
xy

x
y




 [6 marks]

Total 25 marks

6. (a) The diagram below, not drawn to scale is a sketch of the curve
3xy  and the tangent PQ to the curve at ).27,3(P

(i) Find

a) the equation of the tangent PQ [4 marks]

b) the coordinates of Q . [1 mark]
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6. (a)

(ii) Calculate

a) the area of the shaded region, [5 marks]

b) the volume of the solid generated when the shaded region is
rotated completely about the x-axis,  giving your answer in terms
of .

[5 marks]

[If needed, the volume, V ,of a cone of radius r and height h is

given by .
3
1 2hrV  ]

(b) The gradient of a curve is given by

.583
d
d 2  xx
x
y

The curves passes through the point (0, 3).

(i) Find the equation of the curve. [3 marks]

(ii) Find the coordinates of the two stationary points of the curve
in (b) (i) above and distinguish the nature of each point.

[7 marks]

Total 25 marks

END OF TEST


