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Section A (Module 1)

Answer BOTH questions.

-2-

(a) (i)  Complete the table below for the function | fx) |, where fx) = x (2 - x).

has equal roofs.

(c) @ 209 =16""", find x.

X -2 -1 0 1 2 3 4

|lro || 8 0 8
[ 2 marks]
(i)  Sketch the graph of | fix) | for-2<x<4. [ 4 marks]
®) Find the value(s) of the real number, k, for which the equation k(x? + 5) = 6 + 12x ~ x2
[ 6 marks]
{ 4 marks]

(i) Without using calculators or tables, evaluate
"2+ - (2= [ 4 marks]
Total 20 marks
GO ON TO THE NEXT PAGE
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2. (a) Prove, by Mathematical Induction, that 10" — 1 is divisible by 9 for all positive
integers n. { 9 marks]
(b) A pair of simultaneous equations is given by
px+2y=38
—4x+p?y=16
where p € R.
(i)  Find the value of p for which the system has an infinite number of solutions.
[ 3 marks]
(i1) Find the solutions for this value of p. [ 3 marks]
()  Find the set of real values of x for which — ;’ >5. [ 5 marks]
Total 20 marks
Section B (Module 2)
Answer BOTH questions.
3. The equation of the circle, Q, with centre O is x2 + y> — 2x + 2y = 23.
(a) Express the equation of Q in the form (x - a)2 +(y-— b)2 =c. [ 5 marks]
b Hence, or otherwise, state
(i)  the coordinates of the centre of @ [ 2 marks]
(ii) the radius of Q. [ 1 mark]
() Show that the point A(4, 3) lies on Q. [ 3 marks]
(d) Find the equation of the tangent to Q at the point A. [ 5 marks]
{e) The centre of Q is the midpoint of its diameter AB. Find the coordinates of B.
[ 4 marks]
Total 20 marks
GO ON TO THE NEXT PAGE
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4. The diagrams shown below, not drawn to scale, represent

- a sector, OABC, of a circle with centre at O and a radius of 7 cm, where angle AOC

measures _311_ radians.

- arightcircular cone with vertex O and a circular base of radius r cm which is formed when
the sector OABC is folded so that OA coincides with OC.

0 0
7 em
A C B AC
B
{a) (i) Express the arc length ABC in terms of 7. [ 1 mark ]

(ii)  Hence, show that

) r=— [ 3 marks]
b) if h cm is the height of the cone, then the exact value of A is 7 \]6? .
[ 2 marks]
) (i) Showthatcos3 0=4cos30 ~3cos 0. [ 5§ marks]

(ii)  The position vectors of two points A and B relative to the origin O are

a=4cos?Bi+(6cosB-1)j

b =2cos68i —j.

By using the identity in (b) (i) above, find the value of 6, 0 < §< 7’4&, such that

a and b are perpendicular. [ 5 marks]
(c) Find the modulus of the complex number 7 = 252 +3) .
4+3
[ 4 marks]
Total 20 marks
GO ON TO THE NEXT PAGE
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(b)

(c)
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Section C (Module 3)

Answer BOTH questions.

lim sin u

(1) State the value of 40 "

[ 1mark]

(i1} By means of the substitution u# = 3x, show that lim  sin3x _ 3.

x—0 X
[ 4 marks]
(iit) Hence, evaluate lim S?n 3x . { 4 marks]
x—0 sinbx
Ify = i:— + Bx, where A and B are constants, show that
d: d
x? dT)Z’ + x d—i = y. [ 4 marks]

The diagram below, net drawn to scale, shows part of the curve y* = 4x. P is the point
on the curve at which the line y = 2x cuts the curve.

Find
(i) the coordinates of P [ 3 marks]

(ii) the volume of the solid generated by rotating the shaded area through 27 radians
about the x-axis. [ 4 marks]

Total 20 marks

GO ON TO THE NEXT PAGE
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(a)

(b)

(c)

Differentiate, with respect to x,

(x2 +7)° + sin 3x. [ 6 marks]

Determine the values of x for which the function y = x* - 922 + 15x + 4

®
(i)
(iii)

@

(ii)

has stationary points [ 3 marks]
is increasing [ 2 marks]
is decreasing. [ 2 marks]

Use the substitution f = a — x to show that [, f () dx =, f(a - x) dx.
[ 4 marks]

4 5
If [, f() dx =12, usc the substitution ¢ = x - 1 to evaluate [ ¥%G-Dax
[ 3 marks]

Total 20 marks

END OF TEST
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