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SECTION A (Module 1)

Answer BOTH questions.

1. (a) The roots of the cubic equation x*+ 3px?+gx+7r=0 are 1,-1 and 3. Find the values of
the real constants p, g and r. [7 marks]

(b) Without using calculators or tables, show that

L IR

1) eV [5 marks]
o N6+v2 . Ne-~2
—Ne = 4. 5 ks
W v T ez 18 marks]
©) @) Showthat ¥ r(r+ D=1 n@+)(+2), neN [5 marks]
r=1
(i)  Hence, or otherwise, evaluate
50
2 r(+1). ) [3 marks]

r=31
Total 25 marks
2, (a) The roots of the quadratic equation
2x* + 4x +5 =0 are o and B.
Without solving the equation
(i)  write down the values of o+ and aff [2 marks]

(ii)  calculate

a) o + p? \ [2 marks]

b) o + B ' [4 marks]

(11)  find a quadratic equation whose roots are a® and f°. [4 marks]
GO ON TO THE NEXT PAGE

02134020/CAPE 2008



-3-

) (i)  Solve for x the equation P-4 = 3, : [S marks]
(i)  Find x such that log (x + 3) + log, (x - 1)=1. ? [S marks]
(iii)  Without the use of calculators or tables, evaluate
log,, (5) + log,, (3) + log,, (3) + - + log,, (5) + 10, ().
{3 marks]
Total 25 marks
SECTION B (Module 2)
Answer BOTH questions.
3. (a) The }ines y=3x+4 and 4y=3x+5 are inclined at angles a and B respectively to the
x-axis. »
(i)  State the value_s of tan a and tan . [2 marks]
(i)  Without usi{lg tables or calcﬁlators, find the tangent of the angle between the two
lines. » . ‘ {4 marks]
(b) (i)  Prove that sin 26 — tan 0 cos Zé = tan 0. [3 marks]
(i)  Express tan 6 in terms of sin 26 and cos 260. [2 marks]
(iit)  Hence show, without using tables or calculators, that tan 22.5° =V 2 — 1.
' [4 marks]
7 (c) 1) Given that 4, B and C are the angles of a triangle, prove that
a) sin A ;B = cos % ‘ [3 marks]
b) sinB+sinC = 2cos —g— cos B;C . {2 marks]
(ii)  Hence, show that
sinA+sinB+sinC = 4cos 124?— cosg- cos—g—'. [5 marks]
Total 25 marks
GO ON TO THE NEXT PAGE
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(b)
5 (a)
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In the Cartesian plane with origin O, the coordinates of points P and Q are (-2, 0) and
(8, 8) respectively. The midpoint of PQ is M.

(1)  Find the equation of the line which passés through M and is perpendicular to PQ.
[8 marks]

(it)  Hence, or otherwise, find the coordinates of the centre of the circle through P, O
and Q. [9 marks]

(1) Prove thattheliney=x+1is é tangent to the circle x> + 3* + 10x — 12y + 11 =0.
|6 marks]

(i)  Find the coordinates of the point of contact of this tangent to the circle.
{2 marks]

Total 25 marks

SECTION C (Module 3)

Answer BOTH questions.

Find Iim v¥-27 [4 marks]
x—>3 xX+x-12 ‘

A chemical process is controlled by the function
P = —Itf— + vt?, where u and v are constants.

Given that P=-1 when ¢=1 and the rate of change of P with respect to ¢is -5 when
t= % , find the values of u and v. [6 marks]

The curve C passes through the point (-1, 0) and its gradient at any point (x, y) is given
by

dy = 242 _
—d—x- 3x 6x .
(1)  Find the equation of C. [3 marks]
(1)  Find the coordinates of the stationary points of C and determine the nature of
EACH point. [7 marks}
(1i1))  Sketch the graph of C and label the x-intercepts. [S marks]

Total 25 marks

GO ON TO THE NEXT PAGE

02134020/CAPE 2008



(a) Differentiate with respect to x
i) xVv2x -1 : [3 marks]
(i)  sin? (x* +4). [4 marks]
() () Given that I T fx) dx = 7, evaluate j j [2 - f0)] dx. [3 marks]

(i)  The area under the curve y = x>+ kx — 5, above the x-axis and bounded by the

lines x=1 and x=3, 15 14 iunitsz.

3
Find the value of the constant k. [4 marks]
() The diagram below (not drawn to scale) represents a can in the shape of a closed cylinder

with a hemisphere at one end. The can has a volume of 45 1t units®.

(1)  Taking r units as the radius of the cylinder and 4 units as its height, show that,

a) = = T3 [3 marks]
b) A= SL;Z + —9—2—5 , where A4 units is the external surface area of the can.

[3 marks]

(1)  Hence, find the value of r for which 4 is a minimum and the corresponding
minimum value of 4. [5 marks]

[Volume of a sphere = —‘31— n r*, surface area of a sphere = 4 1t 2. |

[Volume of a cylinder = n 2 h, curved surface area of a cylinder =2 nt r A.]

Total 25 marks
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