Moles

A mole (abbreviated mol) is a unit of measure in chemistry.
One (1) mole of any element = it's Relative Atomic Mass (R.A.M. or Ar)
e.g. $1 \mathrm{~mol} \mathrm{Cl}=35.5 \mathrm{~g}$
$1 \mathrm{~mol} \mathrm{~N}=14 \mathrm{~g}$

Avogadro's number (L) is the number of particles (atoms, molecules or ions) in one (1) mole of an element or compound.

1 mole $=\mathrm{L}=6.023 \times 10^{23}$ particles (atoms, molecules or ions)
e.g. (1) How many atoms are there in 0.5 moles of sodium?
$1 \mathrm{~mol}=\mathrm{L}$
$1 \mathrm{~mol} \mathrm{Na}=6.023 \times 10^{23}$ atoms
0.5 mols Na atoms $=0.5 \times\left(6.023 \times 10^{23}\right)$ atoms $=3.01 \times 10^{23}$ atoms

To calculate number of moles of an element:
No. of mols $=\underline{\text { mass }}$
A_{r}
e.g. (2) How many moles are there in 57.5 g of sodium?

No. of mols $=\underline{57.5}=2.5 \mathrm{mols} \mathrm{Na}$
23

To calculate mass of an element:

Mass $=$ no. of mols x A_{r}
e.g. (3) What is the mass of 5 moles of sodium?
mass $=5 \times 23=115 \mathrm{~g} \mathrm{Na}$

To calculate the Relative Molecular Mass (R.M.M. or M_{r}) of a compound:
e.g. (4) M_{r} of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)$

$$
=98 \mathrm{~g}
$$

To calculate number of moles of a compound:
No. of mols $=\underline{\text { mass }}$
M_{r}
e.g. (5) How many moles are there in 1.17 g of sodium chloride?
M_{r} of $\mathrm{NaCl}=23+35.5=58.5 \mathrm{~g}$

No. of mols $=\underline{1.17}=0.02 \mathrm{mols} \mathrm{NaCl}$
58.5

To calculate mass of a compound:

Mass $=$ no. of mols $\times \mathrm{M}_{\mathrm{r}}$
e.g. (6) What is the mass of 0.25 moles of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$?

$$
\text { Mass }=0.25 \times 98=24.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

$$
\left[\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g}\right]
$$

*Note that if the volume of a compound is given, then using:

Density = mass/ volume

The mass of the compound can be calculated first, and then the no. of mols.

A gas takes up a certain volume in a container.
One (1) mole of gas occupies approximately 22.4 dm3 (or $22400 \mathrm{~cm}^{3}$) at standard temperature and pressure (s.t.p.). S.t.p. is $273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ and 1 atmosphere (atm.)

One (1) mole of gas occupies approximately $24 \mathbf{~ d m}^{3}$ (or $24000 \mathrm{~cm}^{3}$) at room temperature and pressure (r.t.p.). R.t.p. is $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1 atm .
$\left[1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}\right]$
e.g. (7) What volume is occupied by 8 g of hydrogen $\left(\mathrm{H}_{2}\right)$ at s.t.p?

First, find no. of mols:
M_{r} of $\mathrm{H}_{2}=2 \mathrm{~g}$
Mols. of $\mathrm{H}_{2}=\underline{\text { mass }}=\underline{8}=4 \mathrm{mols} \mathrm{H}_{2}$
$\mathrm{M}_{\mathrm{r}} \quad 2$

Then, find volume:
1 mol of H_{2} occupies $22.4 \mathrm{dm}^{3}$ at s.t.p.
Therefore 4 mols of H_{2} occupies $(4 \times 22.4) \mathrm{dm}^{3}=89.6 \mathrm{dm}^{3}$
e.g. (8) How many moles of CO_{2} are present in $250 \mathrm{~cm}^{3}$ of gas at r.t.p.?
$1 \mathrm{~mol} \mathrm{CO}_{2}$ occupies $24 \mathrm{dm}^{3}$
$1 \mathrm{~mol} \mathrm{CO}_{2}$ occupies $24000 \mathrm{~cm}^{3}$
If $24000 \mathrm{~cm}^{3}$ contains $1 \mathrm{~mol} \mathrm{CO}_{2}$
$1 \mathrm{~cm}^{3}$ contains $\underset{24000}{\underline{1} \mathrm{~mol} \mathrm{CO}_{2}}$
$250 \mathrm{~cm}^{3}$ contains $\left[\frac{1}{24000} \times 250\right] \mathrm{mols} \mathrm{CO}_{2}=0.01 \mathrm{mols} \mathrm{CO}_{2}$

The amount of solute dissolved in a given quantity of solution is known as concentration.
Concentration is expressed in terms of:
The number of moles of solute in $1000 \mathbf{c m}^{\mathbf{3}}$ (or $\mathbf{1 ~ d m}{ }^{\mathbf{3}}$) of solution. This is called molar concentration. The units of molar concentration are: $\mathbf{m o l} \mathbf{d m}^{\mathbf{- 3}}$ or $\mathbf{m o l} \mathbf{L}^{\mathbf{- 1}}$, abbreviated \mathbf{M}.
E.g. If the concentration of a solution of NaCl is $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$, then this means that there is 1 mole of NaCl dissolved in $1 \mathrm{dm}^{3}$ or $1000 \mathrm{~cm}^{3}$ of solution.

Concentration is also expressed in terms of:
The mass of solute in $1000 \mathbf{~ c m}^{3}$ (or $1 \mathbf{d m}^{\mathbf{3}}$) of solution. This is called mass concentration. The units of mass concentration are: $\mathbf{g d m}^{\mathbf{- 3}} \mathbf{~ o r ~} \mathbf{g L}^{\mathbf{- 1}}$.
e.g. If the concentration of a solution of NaCl is $1.0 \mathrm{gdm}^{-3}$, then this means that there is 1 gram of NaCl dissolved in $1 \mathrm{dm}^{3}$ or $1000 \mathrm{~cm}^{3}$ of solution.

To calculate molar concentration:
Find the number of moles of solute present in $1 \mathrm{dm}^{3}$ of solution.
e.g. (9) Find the molar concentration of a solution of HCl if $25 \mathrm{~cm}^{3}$ of solution contains 0.015 moles of HCl .
$25 \mathrm{~cm}^{3}$ contain 0.015 mol HCl
$1 \mathrm{~cm}^{3}$ contains $\underline{0.015} \mathrm{~mol} \mathrm{HCl}$
25
$1000 \mathrm{~cm}^{3}$ contain $\underline{0.015 \times 1000} \mathrm{~mol}=0.6 \mathrm{~mol} \mathrm{HCl}$ 25

Therefore, the molar conc. of the HCl solution is $0.6 \mathrm{~mol} \mathrm{dm}^{-3}$.

To calculate number of moles of solute in a volume of solution using molar concentration:
e.g. (10) Calculate the number of moles in $25 \mathrm{~cm}^{3}$ of a $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
$1000 \mathrm{~cm}^{3}$ contain $0.05 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$1 \mathrm{~cm}^{3}$ contains $\underline{0.05 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}$
1000
$25 \mathrm{~cm}^{3}$ contain $\underline{0.05 \times 25 \mathrm{~mol}=0.00125 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}, ~}$
1000

To calculate mass concentration:
Find the mass of solute present in $1 \mathrm{dm}^{3}$ of solution.
e.g. (11) Find the mass concentration of a solution of NaCl if $25 \mathrm{~cm}^{3}$ of the solution contains 0.5 g of NaCl .
$25 \mathrm{~cm}^{3}$ contain 0.5 g NaCl
$1 \mathrm{~cm}^{3}$ contains $\underline{0.5 \mathrm{~g} \mathrm{NaCl}}$
25
$1000 \mathrm{~cm}^{3}$ contain $\underline{0.5 \times 1000 \mathrm{~g}=20 \mathrm{~g} \mathrm{NaCl}}$
25

Therefore, the mass conc. of the NaCl solution is $20 \mathrm{gdm}^{-3}$.

To calculate mass of solute in a volume of solution using concentration:
e.g. (12) Calculate the mass of NaCl present in $45 \mathrm{~cm}^{3}$ of a $5.0 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution.
$1000 \mathrm{~cm}^{3}$ contain 5.0 g NaCl
$1 \mathrm{~cm}^{3}$ contains 5.0 g NaCl
1000
$45 \mathrm{~cm}^{3}$ contain $5.0 \times 45 \mathrm{~mol}=0.225 \mathrm{~g} \mathrm{NaCl}$
1000

To convert molar concentration to mass concentration:

Multiply molar concentration by the $\mathbf{M r}_{\mathbf{r}}$ of the solute.
e.g. (13) What is the mass concentration of a $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solution?
M_{r} of $\mathrm{NaCl}=58.5 \mathrm{~g}$
Mass of 2 moles of $\mathrm{NaCl}=2 \times 58.5=117 \mathrm{~g}$
Therefore, the mass concentration of NaCl is $117 \mathrm{gdm}^{-3}$.

To convert mass concentration to molar concentration:
Divide the mass concentration by the $\mathbf{M r}_{\mathbf{r}}$ of the solute.
e.g. (14) What is the molar concentration of a $2.52 \mathrm{gdm}^{-3}$ solution of HNO_{3} ?
M_{r} of $\mathrm{HNO}_{3}=63 \mathrm{~g}$
No. of moles of HNO_{3} in $2.52 \mathrm{~g}=\frac{\text { mass }}{\mathrm{M}_{\mathrm{r}}}=\frac{2.52}{63}=0.04 \mathrm{~mol} \mathrm{HNO}_{3}$
Therefore, the molar concentration of HNO_{3} is $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$.
N.B. Concentration is expressed as the amount of solute in $1 \mathrm{dm}^{3}$ of solution NOT solvent.

When asked to find concentration it is usually molar concentration unless otherwise indicated.

Concentration can also be expressed in terms of:

- Percentage by mass or percentage mass:
\% mass $=$ mass of solute $/$ mass of solution $\times 100$
- $\% \mathbf{w} / \mathbf{w}$ or $\% \mathbf{m} / \mathbf{m}$ - mass of solute in 100 g of solution
- $\% \mathbf{w} / \mathbf{v}$ or $\% \mathbf{m} / \mathbf{v}$ - mass of solute in 100 mL of solution
- $\% \mathbf{v} / \mathbf{v}$ - volume of solute in 100 mL of solution
e.g. A $10 \% \mathrm{w} / \mathrm{v}$ KI solution means that there are 10 g of KI in 100 mL of KI solution.

Preparation of Standard Sofutions.

A solution of a particular/ known concentration is called a standard solution.
Standard solutions are made up in two ways:

1) By calculating the amount of solute required to make up the solution and dissolving this amount in the solvent or
2) By using a solution of a different (higher) concentration and diluting it to get the standard solution. The more concentrated solution is called the stock solution.

However, only a portion of the stock is used therefore, calculations need to be done in order to find out exactly how much of the stock solution is required to make up the standard solution.

1) Calculating the amount of solute required:
e.g. (15) What mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is needed to make $500 \mathrm{~cm}^{3}$ of a $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?

First calculate the number of moles in the standard solution:

No. of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\text { vol. } \mathbf{x} \text { conc. }}{\mathbf{1 0 0 0}}=\frac{500 \times 0.5}{1000}=0.25 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$

Next, convert this number of moles to mass:
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{mol} \mathrm{x} \mathrm{M}_{\mathrm{r}}=0.25 \times 106=26.5 \mathrm{~g}$
Therefore, in order to prepare the $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 26.5 \mathrm{~g}$ of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ must be weighed out and dissolved in enough solvent to make up $500 \mathrm{~cm}^{3}$ of solution.

[^0]2) Calculating the volume of stock solution required for dilution:
e.g. (16) How can $200 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of NaOH be prepared using an NaOH solution of concentration $5.0 \mathrm{~mol} \mathrm{dm}^{-3}$?

First calculate the number of moles of solute in the diluted (standard) solution:
No. of moles of NaOH in diluted solution $=\frac{\text { vol. } \mathbf{x} \text { conc. }}{\mathbf{1 0 0 0}}=\frac{200 \times 0.1}{1000}=0.02 \mathrm{~mol} \mathrm{NaOH}$

Then calculate the volume of the concentrated (stock) solution that contains this number of moles:
$1000 \mathrm{~cm}^{3}$ of stock contains 5.0 mol NaOH
$\underline{1000} \mathrm{~cm}^{3}$ of stock NaOH contains 1 mol NaOH
5.0
$1000 \times 0.02 \mathrm{~cm}^{3}$ of stock contains $0.02 \mathrm{~mol} \mathrm{NaOH}=4 \mathrm{~cm}^{3}$ of stock solution 5.0

Alternatively:
Use $\mathbf{C}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{C}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$:

$$
\begin{array}{ll}
\mathrm{C}_{1}=0.1 \mathrm{~mol} \mathrm{dm}^{-3} & \mathrm{C}_{2}=5.0 \mathrm{~mol} \mathrm{dm}^{-3} \\
\mathrm{~V}_{1}=200 \mathrm{~cm}^{3} & \mathrm{~V}_{2}=? \\
\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(200 \mathrm{~cm}^{3}\right)=\left(5.0 \mathrm{~mol} \mathrm{dm}^{-3}\right) \mathrm{V}_{2} \\
\mathrm{~V}_{2}=4 \mathrm{~cm}^{3} &
\end{array}
$$

Therefore, in order to make up the standard solution of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$, use $4 \mathrm{~cm}^{3}$ of the $5.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution and add enough solvent to make up $200 \mathrm{~cm}^{3}$ of solution.

[^1]
Empirical and molecular formulae

Empirical formula - shows the simplest whole no. ratio of atoms in the compound
Molecular formula - shows the actual no. of atoms in the compound
e.g. (17) The hydrocarbon benzene contains 92.3% by mass of carbon. The mass of 1 mole of benzene is 78 g . Find the empirical and molecular formulae of benzene.

> C

H
Convert \% to mass
92.3 g
7.7 g

Convert mass to moles
$\underline{92.3}=7.69 \mathrm{mols}$.
12
$7.7=7.7 \mathrm{mols}$.

Divide through by the smallest no.
$\frac{7.69}{7.69}=1$
$\frac{7.7}{7.69}=1$
Mole ratio
$1: 1$
Empirical formula $=\mathrm{CH}$
Mass of 1 formula unit $=1(12)+1(1)=13 \mathrm{~g}$
No. of formula units present in $78 \mathrm{~g}=78 / 13=6$ units
Molecular formula of benzene $=6(\mathrm{CH})=\mathrm{C}_{6} \mathrm{H}_{6}$
N.B.: In preparation for the following sections, please review:

- Writing and balancing equations, including state symbols
- Solubility of compounds: nitrates, sulfates, chlorides, carbonates, hydroxides (to be able to write correct state symbols)
- Writing different types of reactions
E.g. Neutralization reactions - acid + base \longrightarrow salt + water

$$
- \text { acid }+ \text { carbonate } \longrightarrow \text { salt }+ \text { water }+ \text { carbon dioxide }
$$

Limiting and excess reagents; percentage yield
e.g. (18) Calcium carbide, CaC_{2} reacts with water to form calcium hydroxide and the flammable gas ethyne (acetylene), according to the equation:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

(i) Which is the limiting reagent when 50 g of water reacts with 50 g of calcium carbide?
(ii) What mass of excess reagent remains after the reaction is complete?
(iii) Given that 20 g of ethyne were produced, calculate the percentage yield of ethyne.
(i) Mols. of $\mathrm{CaC}_{2}=50 / 64=0.781$ mols.
$\left[\mathrm{M}_{\mathrm{r}}\right.$ of $\mathrm{CaC}_{2}=64 \mathrm{~g}$]
Mols. of $\mathrm{H}_{2} \mathrm{O}=50 / 18=2.78$ mols.
[M_{r} of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}$]
CaC_{2} : $\mathrm{H}_{2} \mathrm{O}$
1:2
0.781 mols.: 1.562 mols.
[Using the mols. of CaC_{2}]
1.562 mols. of $\mathrm{H}_{2} \mathrm{O}$ would be required to react with all of the CaC_{2}

Since 2.78 mols. of $\mathrm{H}_{2} \mathrm{O}$ were present in the rxn., $\mathrm{H}_{2} \mathrm{O}$ is in excess.
Therefore, CaC_{2} is the limiting reagent.
(ii) Mols. of $\mathrm{H}_{2} \mathrm{O}$ remaining $=2.78-1.562=1.218$ mols.

Mass of $\mathrm{H}_{2} \mathrm{O}$ remaining $=1.218 \times 18=21.92 \mathrm{~g}$
(iii) $\mathrm{CaC}_{2}: \mathrm{C}_{2} \mathrm{H}_{2}$

1:1
0.781 mols.: 0.781 mols.

Mols. of $\mathrm{C}_{2} \mathrm{H}_{2}$ produced $=0.781$ mols.
M_{r} of $\mathrm{C}_{2} \mathrm{H}_{2}=26 \mathrm{~g}$
Mass of $\mathrm{C}_{2} \mathrm{H}_{2}$ produced $=0.781 \times 26=20.31 \mathrm{~g}$

$$
\% \text { yield }=\underline{\text { Theoretical yield }} \times 100=\underline{\text { Actual yield }_{20.31}^{20}} \times 100=98 \%
$$

e.g. (19) Suppose that 50.0 mL each of $0.150 \mathrm{M} \mathrm{AgNO}_{3}$ and $0.200 \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$ solutions are mixed. The chemical equation for the reaction is:
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$
(i) Which of the two reactants determines the mass of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ which precipitates out of solution?
(ii) What mass of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is formed in this reaction?
(iii) What mass of excess reactant remains in solution?
(i) Mols. of $\mathrm{AgNO}_{3}=50.0 \times 0.150 / 1000=0.0075$ mols.

Mols. of $\mathrm{Na}_{2} \mathrm{CrO}_{4}=50.0 \times 0.200 / 1000=0.01 \mathrm{mols}$.
$\mathrm{AgNO}_{3}: \mathrm{Na}_{2} \mathrm{CrO}_{4}$
2:1
0.0075 mols.: 0.00375 mols.
[Using the mols. of AgNO_{3}]
0.00375 mols. of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ would be required to react with all of the AgNO_{3}

Since 0.01 mols. of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ were present in the rxn., $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ is in excess.

Therefore, AgNO_{3} is the limiting reagent and determines the mass of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ that precipitates out of solution.
(ii)

$$
\mathrm{AgNO}_{3}: \mathrm{Ag}_{2} \mathrm{CrO}_{4}
$$

$$
2: 1
$$

0.0075 mols.: 0.00375 mols.

Mols. of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ produced $=0.00375$ mols.
M_{r} of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=332 \mathrm{~g}$
Mass of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ produced $=0.00375 \times 332=1.245 \mathrm{~g}$
(iii) Mols. of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ remaining $=0.01-0.00375=0.00625$ mols.
M_{r} of $\mathrm{Na}_{2} \mathrm{CrO}_{4}=162 \mathrm{~g}$
Mass of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ remaining $=0.00625 \times 162=1.01 \mathrm{~g}$

Titrations

A titration is a technique usually used to find the concentration of a particular solution.
For example, an acid-base titration can be used to find the concentration of either an acid or base. It is a neutralization reaction that generally produces a salt and water.
e.g. (20) 25 mL of a 0.1 M NaOH solution required 23.5 mL of HCl for complete reaction. Calculate the concentration of the HCl solution.

Mols. of NaOH reacting in the titration $=25 \times 0.1 / 1000=0.0025$
mols. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{NaOH}: \mathrm{HCl}$

1
:
1
0.0025 mols. : 0.0025 mols .

Therefore, the mols. of HCl that reacted in the titration $=0.0025$ mols.
23.5 mL of solution contains 0.0025 mols . HCl

1000 mL of solution contains $0.0025 / 23.5 \times 1000$ mols. $\mathrm{HCl}=0.106$
mols. Conc. of the HCl solution $=0.106 \mathrm{M}$

Back-titrations

When a reaction during a titration is incomplete, direct titration becomes impossible.
In such cases, a back titration is used. Instead of titrating the original sample, a
known excess of a standard reagent is added to the solution, and the excess reagent titrated. A back titration is useful if the endpoint of the reverse titration is easier to identify than the endpoint of the normal titration.
e.g. (21) A scientist wishes to determine the percentage composition of sodium ethanoate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ in a powder. Since sodium ethanoate is the salt of NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$, she performs the following steps:
(1) 10.0 g of powder are dissolved and made up to the mark with distilled water in a 250 mL volumetric flask, (2) 25 mL of this solution is reacted completely with 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, (3) this reaction mixture is then titrated against 0.2 M NaOH which yields an average titre volume of 13.35 mL .
(i) How many moles of excess $\mathrm{H}_{2} \mathrm{SO}_{4}$ remain after Step (2)?
(ii) How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ were consumed in Step (2)?
(iii) What mass of $\mathrm{CH}_{3} \mathrm{COONa}$ is present in 10.0 g of powder?
(i) Mols. of NaOH reacting in Step $(3)=13.35 \times 0.2 / 1000=0.00267$ mols.
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\mathrm{NaOH}: \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2: 1
$$

0.00267 mols. : 0.001335 mols.

Therefore, the mols. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that reacted in Step (3) $=0.001335$ mols.
So the mols. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that remain after Step (2) (i.e. the excess) $=0.001335$ mols.
(ii) Mols. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added initially in Step (2) $=50 \times 0.1 / 1000=0.005 \mathrm{mols}$. Mols. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ consumed in Step $(2)=0.005-0.001335=0.003665$ mols.
(iii) $2 \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ $\mathrm{CH}_{3} \mathrm{COONa}: \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2: 1
$$

0.00733 mols. : 0.003665 mols.

Therefore, the mols. of $\mathrm{CH}_{3} \mathrm{COONa}$ that reacted in Step (2) $=0.00733$ mols.
25 mL of solution contains 0.00733 mols. $\mathrm{CH}_{3} \mathrm{COONa}$

250 mL of solution contains $0.00733 / 25 \times 250 \mathrm{mols} . \mathrm{CH}_{3} \mathrm{COONa}=0.0733 \mathrm{mols}$.
M_{r} of $\mathrm{CH}_{3} \mathrm{COONa}=82 \mathrm{~g}$
Mass of $\mathrm{CH}_{3} \mathrm{COONa}$ in 10 g of powder $=0.0733 \times 82=6 \mathrm{~g}$

[^0]: * Note that standard solutions are always prepared in a volumetric flask because it must be done accurately.

 The solid solute is always weighed out accurately as well (using an analytical balance) and the mass is usually recorded to 4 decimal places (d.p.).

[^1]: * Note that a pipette is used to transfer the required portion of stock solution to the volumetric flask because the volume of stock solution must be transferred accurately.

