Chemical Equilibrium

Chemical equilibrium - occurs when opposing reactions are proceeding at equal rates i.e. the forward and reverse reactions are proceeding at the same rate.

The rate at which the products are being formed from reactants is equal to the rate at which the reactants are being re-formed from the products.

At equilibrium therefore, a mixture of the products and reactants have reached concentrations that will not change any more with time.

Equilibrium reactions are said to be reversible. Double half arrows are used to denote a reversible reaction

Using rate laws:
$\mathrm{k}_{\mathrm{f}}[\mathrm{A}]=\mathrm{k}_{\mathrm{r}}[\mathrm{B}]$
$[B]=\underline{k}_{f}=$ a constant called \mathbf{K}, the equilibrium constant [A] k_{r}

For reactions involving reactants and products at certain concentrations:
e.g. $\quad \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{dD}+\mathrm{eE}$
[$\mathrm{a}, \mathrm{b}, \mathrm{d} \& \mathrm{e}=$ no. of mols.]
The equilibrium constant, $\mathbf{K}_{\mathbf{c}}$ can be calculated:
$\mathbf{K}_{\mathbf{c}}=\underset{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}{[\mathrm{D}[\mathrm{e}} \longrightarrow \begin{gathered}\text { concentrations of products } \\ \text { concentrations of reactants }\end{gathered}$

Note that, unlike in Kinetics (Rates), the number of moles of each product and reactant must be considered when writing Equilibrium constants.
e.g. For the reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathbf{K}_{\mathbf{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
e.g. (1) Calculate K_{c} for the reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

Given that at equilibrium, 0.0014 M of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 0.0172 M of NO_{2} are produced.
$\mathbf{K}_{\mathbf{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(0.0172 \mathrm{M})^{2}}{0.0014 \mathrm{M}}=0.211 \mathrm{M}$

Calculating K from Initial and Equilibrium concentrations

e.g. (2) 0.1 M of H_{2} and $0.2 \mathrm{M} \mathrm{of}_{2}$ at $448^{\circ} \mathrm{C}$ were allowed to reach equilibrium. Analysis of the equilibrium mixture showed the concentration of HI to be 0.02 M . Calculate K_{c} at $448^{\circ} \mathrm{C}$ for the reaction: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

Step 1: Fill in the data given in the question:

	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{2}}$	HI
Initial conc./ \mathbf{M}	0.1	0.2	0
Change in conc./ \mathbf{M}			0.02
Equil. Conc./ M			

Since 0.02 mols. of HI are produced at equilibrium, $(0.02 \div 2=0.01)$ mols. each of H_{2} and I_{2} must have reacted (Check the mole ratios from the reaction: $\mathrm{H}_{2}: \mathrm{HI}=\mathbf{1}: \mathbf{2} \& \mathrm{I}_{2}: \mathrm{HI}=\mathbf{1}: \mathbf{2}$).

So we deduct the number of mols. of H_{2} and I_{2} that reacted from the initial number of mols. used in the reaction to calculate the number of mols. of H_{2} and I_{2} remaining at equilibrium.

Step 2:
Calculate and fill in the rest of the values:

	$\mathbf{H}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{H I}$
Initial conc./ M	0.1	0.2	0
Change in conc./ M	-0.01	-0.01	+0.02
Equil. Conc./ M	0.09	0.19	0.02

Step 3:

Write the K_{c} expression for the reaction and substitute the equilibrium concentration values:
$\mathbf{K}_{\mathbf{c}}=\frac{[\mathbf{H I}]^{2}}{\left[\mathbf{H}_{2}\right]\left[\mathbf{I}_{\mathbf{2}}\right]}=\frac{(0.02 \mathrm{M})^{2}}{(0.09 \mathrm{M})(0.19 \mathrm{M})}=1.2$

For reactions involving gases, at certain pressures:
e.g. $\quad \mathrm{aA}_{(\mathrm{g})}+\mathrm{bB}_{(\mathrm{g})} \rightleftharpoons \mathrm{dD}_{(\mathrm{g})}+\mathrm{eE}_{(\mathrm{g})} \quad[\mathrm{a}, \mathrm{b}, \mathrm{d} \& \mathrm{e}=$ no. of mols.]

The equilibrium constant, $\mathbf{K}_{\mathbf{p}}$ can be calculated:
$\mathbf{K}_{\mathbf{p}}=\underset{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{b}}}{\left(\mathrm{P}_{\mathrm{D}}\right)^{\mathrm{d}}\left(\mathrm{P}_{\mathrm{E}}{ }^{\mathrm{e}}\right.} \longrightarrow$ products
[where $\mathbf{P}_{\mathrm{D}}, \mathbf{P}_{\mathbf{E}}, \mathbf{P}_{\mathrm{A}} \& \mathbf{P}_{\mathrm{B}}$ are the partial pressures of D, E, A \& B resp.]
e.g. (3) A mixture of hydrogen and nitrogen is allowed to attain equilibrium. The equilibrium mixture was analyzed and found to contain 7.38 atm . of $\mathrm{H}_{2}, 2.46 \mathrm{~atm}$. of N_{2} and 0.166 atm. of NH_{3}. From these data, calculate K_{p} for the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathbf{K}_{\mathbf{p}}=\frac{\mathrm{P}\left(\mathrm{NH}_{3}\right)^{2}}{\mathrm{P}\left(\mathrm{N}_{2}\right) \mathrm{P}\left(\mathrm{H}_{2}\right)^{3}}=\frac{(0.166 \mathrm{~atm} .)^{2}}{(2.46 \mathrm{~atm} .)(7.38 \mathrm{~atm} .)^{3}}=2.79 \times 10^{-5} \mathrm{~atm} .^{-2}$

NB: Always use the concentrations at equilibrium to work out K_{c} or K_{p}.
N.B.: The ICE (Initial, Change, Equilibrium) table (from e.g. 2) can also be used to calculate equilibrium partial pressures if initial partial pressures are given.

* Converting between $\mathbf{K}_{\mathbf{c}} \boldsymbol{\&} \mathbf{K}_{\mathrm{p}}$

Use the relationship: $\quad \mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathbf{n}}$
Where: $\mathbf{R}=$ molar gas constant $\left(0.0821 \mathrm{~L}\right.$ atm. $\left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

$$
\begin{aligned}
& \text { T }=\text { absolute temperature }(\mathrm{K}) \\
& \Delta \mathbf{n}=\text { change in number of moles (i.e. mols. of products }- \text { mols. of reactants) }
\end{aligned}
$$

e.g. (4) The K_{c} for the production of ammonia at $300^{\circ} \mathrm{C}$ is $9.60 \mathrm{~L}^{2} \mathrm{~mol}^{-2}$. Calculate K_{p}.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathbf{T}=300+273=573 \mathrm{~K}$
$\Delta \mathbf{n}=$ mols. of products - mols. of reactants $=2-4=-2$
Therefore: $\quad \mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathbf{n}}$

$$
\begin{aligned}
& =9.60 \mathrm{~L}^{2} \mathrm{~mol}^{-2}\left(0.0821 \mathrm{~L} \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 573 \mathrm{~K}\right)^{-2} \\
& =4.23 \times 10^{-7} \mathrm{~atm}^{-2}
\end{aligned}
$$

* Le Chatelier's Principle

If a system at equilibrium is disturbed by a change in temperature, pressure or concentration of one of its components, the system will shift its equilibrium position so as to counteract the effect of the disturbance.

$>$ Change in concentration:

If the concentration of a component increases, the system shifts its equilibrium position so as to decrease the concentration of that component, and vice-versa.
e.g. Consider: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

Increasing the concentration of H_{2} shifts the equilibrium position to the right (in order to decrease the concentration of H_{2}) which in turn increases the concentration of NH_{3}

Increasing the concentration of NH_{3} shifts the equilibrium position to the left (in order to decrease the concentration of NH_{3}) which increases the concentration of both N_{2} and H_{2}

Decreasing the concentration of H_{2} shifts the equilibrium position to the left (in order to increase the concentration of H_{2}) thereby decreasing the concentration of NH_{3}

Removing NH_{3} from the reaction shifts the equilibrium position to the right (in order to increase the concentration of NH_{3}) which decreases the concentration of both N_{2} and H_{2}

NB: The value of the equilibrium constant, i.e. K_{c} or K_{p}, is NOT affected by changes in concentration.

$>$ Change in volume and pressure (for gaseous systems):
Reducing the volume in which a system exists increases the pressure of the system (Recall the Gas Laws), so the system must shift its equilibrium position so as to reduce pressure. It does this by producing the lower number of moles of either the reactants or products.

Increasing the volume in which a system exists reduces the pressure of the system, so the system must shift its equilibrium position so as to increase pressure. It does this by producing the higher number of moles of either the reactants or products.
e.g. (1) Consider: $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

If volume is reduced, equilibrium position shifts to the left, producing more $\mathrm{N}_{2} \mathrm{O}_{4}$ (this is because pressure has been increased so the system produces less moles of components in order to reduce the added pressure being exerted).

If volume is increased, equilibrium position shifts to the right, producing more NO_{2} (this is because pressure has been reduced so the system produces more moles of components in order to increase pressure).

For reactions that have multiple reactants and products, find the total number of mols. of reactants and the total number of mols. of products, then compare to find the greatest or least number of mols. being produced.
e.g. (2) Consider: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

Reducing volume increases pressure so equilibrium position shifts to the right (less mols. produced, i.e. 2 mols.).

Increasing volume decreases pressure so equilibrium position shifts to the left (more mols. produced, i.e. 4 mols.).

NB: The value of the equilibrium constant, i.e. K_{c} or K_{p}, is NOT affected by changes in volume and/ or pressure.

$>$ Change in temperature:

Exothermic reactions favor low temperatures.
Endothermic reactions favor high temperatures.
e.g. (1) Consider: $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \quad \Delta \mathrm{H}=87.9 \mathrm{~kJ}$

An increase in temperature shifts equilibrium position to the right, producing more PCl_{3} and Cl_{2} (this is because the forward reaction is endothermic and proceeding in this direction will use up the heat being added to the reaction and decrease temperature; Recall: endothermic reactions require energy).

A decrease in temperature shifts equilibrium position to the left, producing more PCl_{5} (this is because the reverse reaction is exothermic and proceeding in this direction will produce heat and increase temperature; Recall: exothermic reactions produce energy).
e.g. (2) Consider: $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4} \rightleftharpoons \Delta \mathrm{H}=-58 \mathrm{~kJ}$

Increasing temperature shifts equilibrium position to the left, producing more NO_{2}.
Decreasing temperature shifts equilibrium position to the right, producing more $\mathrm{N}_{2} \mathrm{O}_{4}$.

NB: The value of the equilibrium constant, i.e. K_{c} or K_{p}, IS ALWAYS affected by changes in temperature (refer to the Summary table below).

> Addition of a catalyst

Adding a catalyst to the equilibrium reaction affects BOTH the forward and reverse reactions,

Summary:

Change		Effect on equilibrium position	Effect on equilibrium constant (\mathbf{K}_{c} or K_{p})
Concentration/ Amount	Increase in conc. of reactants or decrease in conc. of products	Shifts to the right	No change
	Decrease in conc. of reactants or increase in conc. of products	Shifts to the left	No change
Pressure/ Volume	Decrease in volume or increase in pressure	Shifts to the side that produces the lower no. of moles of gas	No change
	Increase in volume or decrease in pressure	Shifts to the side that produces the higher no. of moles of gas	No change
Temperature	For exothermic rxns.:		
	If temp. increases	Shifts to the left	K_{c} or K_{p} decreases
	If temp. decreases	Shifts to the right	K_{c} or K_{p} increases
	For endothermic rxns.:		
	If temp. increases	Shifts to the right	K_{c} or K_{p} increases
	If temp. decreases	Shifts to the left	K_{c} or K_{p} decreases
Catalyst		No change	No change

Practice questions:

1. For the following reaction:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
It was found that at equilibrium: $\quad\left[\mathrm{NH}_{3}\right]=0.015 \mathrm{M}$

$$
\begin{aligned}
{\left[\mathrm{N}_{2}\right] } & =0.07 \mathrm{M} \\
{\left[\mathrm{H}_{2}\right] } & =0.20 \mathrm{M}
\end{aligned}
$$

Calculate the value of K_{p} for the reaction at $25^{\circ} \mathrm{C}$.
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.015 \mathrm{M})^{2}}{(0.07 \mathrm{M})(0.20 \mathrm{M})^{3}}=0.40 \mathrm{M}^{-2}\left(\right.$ or $\left.0.40 \mathrm{~mol}^{-2} \mathrm{~L}^{2}\right)$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$\mathrm{T}=25+273=298 \mathrm{~K}$
$\Delta \mathrm{n}=$ mols. of product - mols. of reactant $=2-4=-2$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}=0.40 \mathrm{~mol}^{-2} \mathrm{~L}^{2}\left(0.0821 \mathrm{~L} \mathrm{~atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K}\right)^{-2}=6.7 \times 10^{-4} \mathrm{~atm} .^{-2}$
2. When equimolar proportions of hydrogen and iodine are heated together at a certain temperature, the system at equilibrium was found to contain $0.0017 \mathrm{moldm}^{-3}$ of hydrogen, 0.0017 moldm $^{-3}$ of iodine and 0.0018 moldm $^{-3}$ of hydrogen iodide.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

Calculate the equilibrium constant for the reaction at this temperature, and hence the K_{p} for the reaction.
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(0.0018 \mathrm{M})^{2}}{(0.0017 \mathrm{M})(0.0017 \mathrm{M})}=1.12$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$\Delta \mathrm{n}=$ mols. of product - mols. of reactant $=2-2=0$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}} & =\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}} \\
& =1.12\left(0.0821 \mathrm{~L} \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K}\right)^{0} \\
& =1.12(1) \\
& =1.12
\end{aligned}
$$

[That is, $K_{p}=K_{c}$ when: no. of mols of product $=$ no. of mols. of reactant]
3. A sample of nitrosyl bromide is heated to $100^{\circ} \mathrm{C}$ in a 10.00 L container in order to decompose it partially according to the equation:

$$
2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

The container is found to contain 6.44 g of $\mathrm{NOBr}, 3.15 \mathrm{~g}$ of NO and 8.38 g of Br_{2} at equilibrium.
(i) Find the value of K_{c} at $100^{\circ} \mathrm{C}$.
(ii) Find the total pressure exerted by the mixture of gases.
(iii) Calculate K_{p} for the reaction at $100^{\circ} \mathrm{C}$.
[R.A.M.: $\mathrm{N}=14 ; \mathrm{O}=16 ; \mathrm{Br}=79.9$]
(i) M_{r} of $\mathrm{NOBr}=109.9 \mathrm{~g}$

No. of mols. $\mathrm{NOBr}=6.44 \mathrm{~g} / 109.9 \mathrm{~g}=0.059 \mathrm{mols}$.
$[\mathrm{NOBr}]=0.059 / 10.00=0.0059 \mathrm{molL}^{-1}$
M_{r} of $\mathrm{NO}=30 \mathrm{~g}$
No. of mols. $\mathrm{NO}=3.15 \mathrm{~g} / 30 \mathrm{~g}=0.105$ mols.
$[\mathrm{NO}]=0.105 / 10.00=0.0105 \mathrm{molL}^{-1}$
M_{r} of $\mathrm{Br}_{2}=159.8 \mathrm{~g}$
No. of mols. $\mathrm{Br}_{2}=8.38 \mathrm{~g} / 159.8 \mathrm{~g}=0.052 \mathrm{mols}$.
$\left[\mathrm{Br}_{2}\right]=0.052 / 10.00=0.0052 \mathrm{molL}^{-1}$
$K_{c}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]}{[\mathrm{NOBr}]^{2}}=\frac{\left(0.0105 \mathrm{molL}^{-1}\right)^{2}\left(0.0052 \mathrm{molL}^{-1}\right)}{\left(0.0059 \mathrm{molL}^{-1}\right)^{2}}=0.016 \mathrm{molL}^{-1}$
(ii) Total mols. of gas in $10 \mathrm{~L}=0.059$ mols. +0.105 mols. +0.052 mols. $=0.216$ mols.

$$
\mathrm{PV}=\mathrm{nRT}
$$

(This is the Ideal Gas Equation)
$\mathrm{P}(10 \mathrm{~L})=0.216$ mols. $\left(0.0821 \mathrm{~L} \mathrm{~atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(373 \mathrm{~K})$
$\mathrm{P}=0.66 \mathrm{~atm}$.
(iii) $\mathrm{T}=100+273=373 \mathrm{~K}$
$\Delta \mathrm{n}=$ mols. of product - mols. of reactant $=3-2=1$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}=0.016 \mathrm{~mol} \mathrm{~L}^{-1}\left(0.0821 \mathrm{~L} \mathrm{~atm} . \mathrm{mol}^{-1} \mathrm{~K}^{-1} \mathrm{x} 373 \mathrm{~K}\right)^{1}=0.49 \mathrm{~atm}$.
4. Consider the following equilibrium at $460^{\circ} \mathrm{C}$:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=+640 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Predict and explain the effect on concentration of $\mathrm{SO}_{3}(\mathrm{~g})$ when the changes indicated below are carried out:
(i) The pressure is increased.
(ii) The reaction vessel is cooled to $200^{\circ} \mathrm{C}$.
(iii) $\mathrm{NO}(\mathrm{g})$ is removed.
(iv) A catalyst is added.
(i) The concentration of SO_{3} remains the same. Since there are equal number of moles of gas on both sides, pressure has no effect on the equilibrium position or on the concentration of SO_{3}.
(ii) The concentration of SO_{3} decreases. Since temperature is being reduced, heat must now be produced. Therefore the reverse reaction, which is exothermic, must occur. $\mathrm{NO}(\mathrm{g}) \& \mathrm{SO}_{3}$ (g) are thus being used up.
(iii) The concentration of SO_{3} increases. Since a product's concentration (NO) is decreasing, equilibrium shifts to the right and more NO and SO_{3} are produced.
(iv) The concentration of SO_{3} remains the same. A catalyst has no effect on the equilibrium position or on the concentration of SO_{3}.
5. Consider an equilibrium mixture of nitrogen, hydrogen and ammonia, in which the reaction is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.2 \mathrm{~kJ} \text { at } 25^{\circ} \mathrm{C}
$$

For each of the changes listed below, determine whether the value of K_{c} increases, decreases or stays the same and determine whether more or less NH_{3} is present at the new equilibrium established after the change.
(i) More H_{2} is added (at a constant temperature of $25^{\circ} \mathrm{C}$ and constant volume).
(ii) The temperature is increased.
(iii) The volume of the container is doubled (at constant temperature).
(iv) Some more N_{2} is pumped into the equilibrium mixture from an external source.
(i) No change in K_{c}; more NH_{3} present (equilibrium shifts to the right)
(ii) K_{c} decreases; less NH_{3} present (equilibrium shifts to the left)
(iii) No change in K_{c}; less NH_{3} present (equilibrium shifts to the left)
(iv) No change in K_{c}; more NH_{3} present (equilibrium shifts to the right)

